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ON SLINDER DELTA WINGS WITH LEADING-EDGE SEPARATION

I& Clinton E. Brown and William H. Michael, Jr.

SUMMARY

The slender-body a~roximation of
applied to the problem of a delta wing

linearized compressible flow is
in which flow separation occurs

at the leading edges. The vortex sheets found in the real flow are
approximated by concentrated vortices with feeding httices, and a
plausible adaptation of IGQvin~s theorem is applied to simulate the
force-free nature of the vortex sheet.

The computations show that leading-edge separation produces an
increase in lift over that given by the Jones slender-wing theory and
that the Mf t does not vary Mnearly with angle of attack. Ccmputi
pressure distributions and span loadings are presented and the theo-
retical lift results are coruparedwith the results of simple force tests
made at a ~ch nmiber of 1.9.

A large nmiber of fluid

INTRODUCTION

flows are affected to the first order by
the fluid &cosi@ end yet do not constitute motions having restric~ive
amounts of viscous dissipation. Such fluid flows may be treated as
special cases of irrotational or potential flows j thus”their simplifica-
tion and ultimate solution are possible by well-lmown analytical methods.
firchhoff (see ref. 1, p. ~) was probably the first to suggest this
approach when he proposed that the drag of fIat plates might be estimated
by assming that the flow separated fran the sharp edges and fomd a
vortex wake behind the plate. Von K&m&n (see ref. 1, p. ~) later
calculated the asymptotic fm of the wake also by assuming that the
dissi~tion due to viscosity was small. There is little in the liter-
ature which concerns the details of separated flowsj however, Prandtl
(ref. 2) has discussed the formation of spiral vortex sheets at the
edges of flat plates in two dimensions, and Anton (ref. 3) has computed
the position of the spiral as a function of time for a plate suddenly
set in motion. The emphasis of references 2 and 3 was primarily on the
vortex behavior and no attempt was made to estimate the forces acting
on the plate.
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In the present paper, the flow over a slender delta wing is con-
sidered and leading-edge separation is assumed. The physical flow field
over the wing is expected to look like the schematic drawing shown in
figure l(a), at least for vanishing aspect ratiosj that is, separation
occurs on the leading edge and prmiuces the two spiral vortex sheets
across which the pressure is continuous but the tangential veloci.~ is
discontinuous. For the slender delta wing in supersonic flow, the field
is conical inasmuch as there is no characteristic dimension on which to
base variations of any que.ntity”along conical rays through the origin.
Within the limits of slender-body theory, the model in figure l(a) is
also applicable to subsonic flows. The only contribution of viscosity
in these flows is to fix the separation point at the leading edge ~or
reasons exactly analogous to those Justifying the use of the Kutta
conditim at subsonic traiMng edges. Solution of the problem consid-
ering the spiral vortex sheet was found to be too diffictiij hence, a
simplified mcdel, more amenable to calculation, was adopted. This
model, shown in figure l(b), replaces the Spiral sheet with two concen-
trated lLne vortices above the wing and two feeding vortex sheets
connecting the source of vortici~ (leading edge) and the concentrated
line vortices. It is expected that the results of the simplified-model
calculations should give a fair estimate of the forces acting on the
wing and indicate the important features of flows involving separated
leading edges.

A payer by Legendre (ref. 4) dealing with the same problem has been
discussed by Adams (ref. ~). Adsms pointed out that Legendre~s solution
failed to account properly for the forces on the feeding vortex sheet
and that inclusion of the sheet forces produced a result which in effect
left an uncanceled finite force in the flow field over the wing. This
difficulty was encountered by Dr. Adams and the senior author in a
preliminary investigation of the problem, and aclmmd.edgment is made
to Dr. Adsms for his contributions in the early stages of the work. h
the present paper, the previously found difficul~ is resolved %y use
of more appropriate boundary conditions. Clarification of this point
is made in the analysis. Work of essentially the same result as the
present report has also been discussed by Edwards in reference 6.

Experiments are described which allow comparison of the theoreti-
cally predicted forces with the test results, and a discussion is given
of scme factors affecting the overall problem of leading-edge separa-
tion on sweptback wings. The essential theoretical work reported herein
was presented in a more condensed form in reference 7.

.

b
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SYMBOIS.
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a half-wing span at any chordwi.sestation x

CL Iift coefficient, L

‘(Wing area)
2

L u-t

M Mach number

m apparent mass

P pressure

fm/~=‘lOcal- Pfree stre~

$+

v free-stresm velocity

V,w disturbance velocities in y- and z-directicms,
respectively

v+ mean normal flow velocity over vortex

w complex velocity potential

x coordinate

Y coordinate

z coordinate
.

along wing in direction of free stream

along wing normal to free stream

normal to wing surface

a angle of attack

r vortex-core strength

E semivertex angle of wing

7 imaginary psrt of f3

e vector-point coordinate (see fig. 2), ~ + iq

G complex con@gate of e, g - iq
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E

P

a

3

v
Subscripts:

o

1

real part of 6

free-stream density

vector-point coordinate (see fig. 2), y + iz

complex conjugate of u, y - iz

disturbance velocity potential

value at vortex position

flow condition with right vortex removed

Partial differentiation is indicated by subscripts; that is, ~ = ~.

ANALYSIS

Computation of Flow

The problem to be considered is that

Field

of potential flow about a
slender delta wing on which leading-dge separation existsj that is,
the streamlines of the flow which wet the wing do not pass frcm the
lower to the upper surface but rather come from both surfaces and leave
a% the leading edge. In reality, such a condition would produce a
conical spiral vortex sheet above the wing, and the boundary conditions
of the problem would be that no fluid pass through the wing surface and
that the pressure across the vortex sheet be continuous. Clearly this
situation represents a difficult problem because the solution must
provide both the shape and strength of the sheet. Past e~rience with
vortex sheets leads to the hope that the main feat~es of the flow can
be obtained by replacing the spiral sheet by a concentrated vortex near
the center of the spiral. For conical flow, however, the net vorticity
in the spiral is linearly increasing in the downstream direction hence,
the concentrated vortex must also be of linearly increasing strength.
The increase in strength must be accomplished %y a feeding vortex sheet
in order to satisfy Kelvin’s theor~j thus, the mcxtelshown in figure l(b)
seems to be the most appropriate flow field amenable to simple calculation.

The equation of motion to be satisfied represents a slightly per-
turbed main stream of velocity V and corresponding ~ch number M:

.

.

(l-@%+~+qzz=o (1)
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where q is the disturbance veloci~ potential and x, y, sad Z are

Cartesian coordinates fixed to the wing. (The coordinate z is
measured perpendic~ to the flat wing surface, y Is tangential to
the wing surface but normal to the free-stresm veloci& vector, and x
is masured in the flow direction along the ting.) IT the flow is
further restricted to highly swept wings, the term (1 - M?)& may

be neglected and the equation of motion beccmes Laplace’s equation in
y and z:

(2)

With this assumption, the well-known slender-body theory can be ~edj

hence, subsequent discussion will generally be related to the two-
dimensional flow field.

Boundary conditions.- The boundary conditions at the plate are
that the plate is solid and hence the normal velocities are zero and
that the flow separates tsmgentially at the plate edges. The boundary
conditions in the field are that the disturbances vanish at infinity
and that the fluld pressure is continuous. Zn the real flow the hst
condition is satisfied by the fact that vortex elements lie along
streamlines. The last condition is, however, impossible to satisfy
with the assumed model and hence must be replaced with one which is
more compatible. The clifficul.~ lies in the presence of the fceding
vortex sheet across which a pressure discontinui~ must ‘exist(because
there is a ccinponentof the velocity throu@ the sheet), but since the
assm.ed vortex system represents the true spiral only at a distance,
it is to be expected that, in the small regions near the system, viola-
tion of natural conditicms might occur. It is, therefore, necessary
to make the last boundary condition less detailed and hence to require
only that the integral of pressure around the”assumed vortex system
vanish. Ih s@d.er terms, as a final condition the assumed vatex
system (feeding sheet and concentrated vortex) must have zero net
force acting since only the wing and not the fluid can sustain forces.
Application of this idea to the model then requires that the forces
on the feeding vortex sheet be cancelled by equal but opposite forces
on the concentrated vortex; thus the concentrated vortex is not force
free as was assmed in the Iegendre solution (ref. 4). The mathemati-
cal formulation of the preceding boundary conditim is as follows: At
a given station x where the half-wing span is a, introduce the
quanti@ u = y + iz, the vector distance to a point (y,z). The
feeding sheet is assumed to be composed of filsments stretching frcm
the leading edge to the vortex core as shown in figure l(b). The
vector force on each filament representing the vorticity lying between
x and a point x + dx can be expressed as

ipV~uo - a)
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because 17,tie vortex-core strength, is a linearly increasing function

of x and hence gg~ is constant for all values of x. (Note that

cosines of small angles are taken equal to unity.) The vector force on
the concentrated vortex must be producedby a fluid flow norml to the
vortex and of vector velocity W. The vector force would be

-iptir

Setting the vector sum of the two forces equal to zero in accordance
with the previous discussion thus yields

(3)

where e = = and ~ = x & because the vortex strength is Hnear in x.
x

Equation (3) thus requires that the resultant flow velocity normal to
the concentrated vortex filsment be a function of the vortex position
and the wing semivertex angle e. !Ihecomplex velocity * is, however,
pr~uced by the component of the nmin stream normal to the concentrated
vortex plus the normal ccmponent of the velocity due to the disturbance
velocity potential q. The disturbance velocity is singular at the
vortex position; however, * can be expressed as

v+=-vc~ + (v+ iw)l
a 0=00

and hence,

(4)

(5)

where the velocity (v + iw)l evaluated at a = LTo represents the
average stream velocity over the vortex position and i.seasily computed
in the usual manner by subtracting the velocity field of the vortex
(purely circulatory about

1
Uo) frcunthe complex velocity and then by

taldng the limit as a approaches ao.

Potential solution.- A solution of equation (2) is now sought
which satisfies the aforementionedbound- conditions. The unknowns
in the problem are the location and strength of the concentrated vortex
and the lift on the @ate. The complex velocity potential W(u,a) is
now introduced and is ccmposed of the sum (p+ i~ where ~ is a
function similar to a stream function but has no physical significance
with respect to the three-dimensional streaml.lnesof the flow. The

.

.
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dependence of the solution on
x and a because, according
longitudinal deviation frcdna

7

x Hes only in the relationship b,etween
to the slender-body concept, a gradual
two-dimensional flow pattern changes the

cro~sflow velocity field negligibly. For the same reason, the transverse
vorticity on the wing and in the feeding vortex sheet does not contri-
bute to the complex potential function in the crossflow plane. The
solution of interest is derivei by conformal mapping of the flow past
two symmetrically placed vortices of equal but opposite strength. Thus,
in the e-plane (see fig. 2)

e-e.
w(e) = -~lo*—- iVaO

e+llo

!mmsfow.ng -wtion (6)
yields

Eqution (7), which
P. 2%), thus represents
having two symmetrically
located at positions a.

(6)

to the a-plane by the substitution 8 = ~c? - a2

was also given by Riabouchinsky (see ref. 8,
the flow normal to an impermeable flat plate
placed vortices of equal but opposite strengths
and -3..

The boundary condition that the flow leave the plate tangentially
at the edges yields the following relationship between r and vu:

2fiVa_

r &+&

(8)

This equation is easily obtained in the e-plane by requiring the presence
of a stagnation point at the origin.

The final boundary condition to be applied (eq. (~)) requires the
calculation of the mean veloci~ at the vortex location; hence, the .
effect of the complex function W(a) ~ss the complex potential function
of the right-hand vortex must be considered, or

Wl(ff) = w(d) +2.& logJd - Cro) (9)

Differentiating equation (9) tith respect to u and setting tY equal
to co yields the conjugate of the complex veloci~, or (v - iw)~, at

the vortex location.
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Rearranging real and imaginary parts of equation (~) yields ●

(lo) ,

and combining equations (7) to (10) results in

ir

[

‘o a. do
z Z-az+

J(

+ .._

)(
2 232-a2

/( )(
22-22

‘O *o-a ao-aao-a )
22

0 *o-a

(u)

Equation (11) gives the means of finding the vortex location a.

because the”real ~d imaginary parts give @o equations in the unkno~
coordinates y. and Zo. Upon separation d equation (Xi) into its
real and imaginary parts, the simultaneous equations were foumd to be
greatly expanded and not amenable to analytic solution. Consequently,
the equations were solved in a numerical manner by choosing a value of
Z. and findi~the value y. which would give an equal value of the

common parameter r/ve for the two eqmtions. Equation (n) was also
solved approximately by assuming the absolute value of 00 to be nearly

equal to a and expanding the radicals in power series. A solution
was thus obtained which was valid to the second order in the parsm-

fso-a
eter —. This simplified approach gives an analytic expression

for the p%sition of the vortex which is

(X2)

The approximate solution is plotted, together with the exact solu-
tion of equation (n), in figure 3. It is seen that the path of the
vortex center of gravity moves inboard and up as is already lmown to be
the correct physical motion, and the center of vorticity appears to
becane asymptotic to a vertical line at about ~ percent of the semispan.
The agreement between the approximate and exact solutions is excellent.

The variations of both vortex position and vortex strength with
angle of attack were obtained by making use of the relationship between
Z. and y. and equations (8) and (n). These computationswere per-

formed both approximately and exactly, and the results are given in

.

T

.

.
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figures 4 and 5. The a~roximate equations governing the angle of attack
and vortex strength are

and

(13)

(14)

For small angles of attack the vortex cores Ue in a plane inclined
to the free stream at an angle three-fourths the angle of attack of
the plate, and hence the vertical position of the cores is almost a
linear function of the angle of attack. Figure 5 indicatis that the
vortex strength Increases roughly linesrly with angle of attack.

Computation of IiLft

Lift results.- The lift is
siderations or by computing the
infifite plane perpendicular to

L= -pv
m ‘%-

and Pressure Distribution

most easily obtained from mcsnentumcon-
flow of downward momentum through an
the stream at the traiMng edge; thus,

) JVadzdy=-pV qdy (15)
c

Here the contour is the wing trace plus the cuts connecting the wing tips
and the vortex center. Note that ~ is the veloci~ component in a

plane perpendicuhr to the wing surface and hence contains, in the present.
usage, the upwash contribution of the main stream.

Equation (15) can be expressed in terms of the cmplex pot-en-
tial W(cr) because W(a) = (p+ iv as

.= R.,.~pv(Jwd.+J*d$] (16)

where R.P. stands for the real part of the ccm@.ex function. The inte-
gration of * is zero sround the closed curve since * is single
valued in the field and constant on the wing boundsry. Furthermore,
the function W(u) is analytic in the field external to the contour;
hence, the integral is independent of the path provided that it encloses
the original contour.
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!lhesimplest integration is obtained by transfcmming equation (16) #
to the El-plane;hence,

L=-=p&w%P’j
Substituting equation (6) gives

L=

[ J(

R.P. iPV ~ loge
~a

a+va)(,+)dj

= Pvr(eo+ go) + p@tia2

or, in lift-coefficientform,

●

(17)

(18) -

(19)

In this equation, the second term represents the lift which would be
obtained in the absence of leading-edge separation (the lift as computed b

by Jones, ref. 9), and the first ~rm~presents the departure from the

Jones value. The real function 0 ~ o is a function of a/e, and ●

r is proportional to aVa times a function of a/e; hence, the lift
coefficient may be expressed as a~f(a/e) or its equivalent, ~2f(a/G).

The lift computations for all aspect ratios can therefore be given by a
single curve which is presented in figure 6 for the exact solution of
equation (19) along with two approxinmtions thereof. The curve labeled
“First order” was also obtained by lMwards in reference 6 and is computed
as mentioned in the previous section by expanding the equations in series

form about the wing tip and retaining only first-order terms in ~.

The second-order result is obtained by extending the analysis to include
terms of the next highest order. In view of the obvious approx-tions
involved in the fundamental assmuptions of the theory, the small differ-
ences indicated in figure 6 are probably of little consequence. The
analytical expression for the second-order result is

$.&+l&
E (#3~+Xaq (20)

The Jones results are also included in figure 6 for comparative purposes.
.

.
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.

r

me calculations predict an increased lift when leading-edge
separation is present. This result csm be shown to hold true for the
case in which the full spiral sheet is treated, and the Jones result
representing a crossflow of minimum kinetic energy also represents the
minimum lift or minimum crossflow apparent mass. The lift and apparent
mass are directly re~ted according to Mumk (ref. 10) and can be
expressed by the equation

L=V%

where m is the additional apparent mass of the
perpendicuMr to the main stream at the trailing
proof of the minimum-lift theory is given in the

flow field in a plane
edge of the wing. The
appendix.

=essure distribution.- The first-order expression for the pressure
coefficient is

AP—=

( )

%2-2~+a2-—
$ Z.o

(21)
~

on the wing surface. The second term on the right does not normally
arise when coordinates fixed with respect to the free stream are used;
however, it is necessary when the coordinates are tilted through an angle
of attack, as is the case in the present analysis. This term does not

contribute to the lift. The factor ~ can be expressed as Pa ~
dawhere —= G, the semivertex angle.
dx The veloci~ potentials appearing

in equation (21) can be obtained from the ccmplex potential function of
equation (~) by differentiation and by uEing the definitions

and

% = R.P. *
~a

Therefore the

Pressure
wing, and the
ratios can be

pressure coefficient beccmes

(22)

distributions were calculated for a 15° semivertex-angle
results are plotted in figure 7. Results for other aspect
easily obtained since, for any given value of m/E, both
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lift and pressure distributims are proportimal to 62. The very-low- .

pressure region on the wing upper surface is caused by the presence of
the vcmtex, and the negative pressure peak corresponds approximately to
the lateral position of the vortex. ,

Figure 8 shows the corresponding span loadings which are of interest
in that a considerable deviation frcm the elliptical loading can be seen.

GENERAL PHYSICML CONSIDERATIONS

Zhe present theary should be considered a Mniting one for van-
ishingly small values of the aspect ratio; hence, its primary usefulness
is to give a better picture of what a real flow does in such a limiting
case. When finite aspect ratios are contemp~ted, several important
physical modifications srise. One of these modifications is evident
fran the pressure distributions (fig. 7) where, for e = 15°, the upper-
surface absolute pressure is calculated to be negative even for mcderate
Mach nunibers. Clearly then, compressibility effects must modify those
flow patterns, pressure distributions, and span loadings considerably
when the pressures approach the vacuum condition. Just how the modifi-
cation occurs is not fully knownj however, in same cases experiments
have shown two distinct types of leading-edge behavior (ref. n), one

a

separated and the other unseparated, with a special shock system replacing
the vortex sheet. .

Another physical modification which can occur is the breaking-up of
the spiral vortex sheet into two or’more spirals or regions of concentrated
vorticity. The occurrence of such a pattern is dependent on the stability
of the vortex sheet formed at the wing leading edge. Testing the three-
dimensional sheet for reaction to small disturbances is an extremely
difficult problem, and even its two-dimensional counterpart, the formtim
of a * street behind an impulsively started fkt plate, has not been
solved. Finally, a pressure gradient which is conducive to boundary-
layer separation appears to be situated near the leading edge of the
triangular wing with separated flow. ~ such a situation, a secondary
vortex having a rotational direction opposite that of the main sheet
would be produced; hence, a modification of the assumed physical-flow
picture would result. (The existence of such a vortex was first pointid
out to the authors by Rrofessor N. Rott of Cornell University.) In the
latter case, the presence of secondary separation should be dictated by
the pressure gradients normal to the leading edge on the upper surface;
hence, for wings with finite angles at the edge, a crossfluw stagnation
point should exist and the separation tendency should be more pronounced
than on a flat plate or a cusped-leading-edgeprofile.
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. Of some interest in the present theory are the stream surfaces in
the three-dimensional flow. Clearly, the streamlines leaving the leading
edge curl up into the center of the vortex spiral; however, one adJacent

. streamline passes over the spiral, impinges on the upper surface or
plane of symmetry, and splits into two parts, one part passing almost
straight backward on the upper wing surface and the other part passing
into the vortex-spiral region to form the inner side of the vortex

.

spiral. Such streamlines form a conical stream sheet which, when inter-
sected by a plane perpendicular to the free-stream velocity, looks llke
the sketches of figure 9. The surface ray along which the flow impinges
has been calculated for the sbnplifiedmodel and the results are given
in figure 9. As the angle of attack increases, the impingement point

moves inboard from the leading edge until, at a value of :=1, it

moves onto the plane of symmetry.

EXPERIMENTS

Lift and pitching-moment data were obtained on three wings tith
semivertex angles of 5°, 7.5°, and 100 in a Mach number 1.9 blowdown
jet of the Langley gas dynamics laboratory. The wings had sharp 1° wedge.
airfoil sections tith 9-inch root chords sad were semispan models mounted
on a boundary-layer scoop-off plate, the leading edge of which was

. l? inches faward of the wing apex. Although the wings were mounted on

the scoop-off plate, a boundary layer with a thickness of 3 percent of the
semispan of the smallest wing still existed. From unpublished data, the
effect of this boundary layer on the lift results is believed to he
negligible. Forces and mcments were obtained fra.ua strain-gage balsnce
system and tests were conducted at a ~ynolds nuuiberlevel of 1.6 x 16
per inch.

The experimental lift data are compsred tith the Jones slender-wing
theory in figure 10. The data exhibit the same nonlinearity as pre-
dicted but fall progressively lower than the theoretical curve as the
apex angle is increased. Compressibility effects as discussed in a
previous section are believed to account for the decrease in actual
lift over that predicted theoretically. Inasmuch as the compressibility
effects should become less important with decrease in E or Mach nuniber,
the present tests at a constant Ikch ntier of 1.9 should indicate a
decrease in cmpressibil@ effects with smaller values of E. This is
apparently what happens, since the predicted and measured values tend to
converge as e approaches zero.

.

.

Drag-due-to-lift results are not presented for these flat wings
because We drag equals the lift t5mes the angle of attack since there
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is no leading-edge suction. The lack of leading-edge suction in the
theory results directly frm the application of the Kutta condition at
the leading edge; hence, the edge velocities and pressures are required
to be finite. The center of pressure is located at the two-thirds-root-
chord position, as would be expected for any conical flow.

CONCLUSIONS

An approximate theory for the flow over delta wings having separated
flow at their leading edges leads to the following conclusions:

1. The lift-curve slope of wings of low aspect ratio should be
nonlinear and higher than the lift-curve slope obtained from slender-
wing theory in which leading-edge separation was not assumed. For the
higher as~ct ratios (apex angles), little change in lift-curve slope
should be expected for the two cases.

2. The span load distribution and wing pressure distribution are
markedly affected by the presence of leading-edge separation.

3. Experimental force measurements on very slender delta wings
having semivertex angles of 5°, 7.5°, and lQO at a Mmh number of 1.9
indicate good agreement between theory and experiment for the most
slender wing with gradmlly increasing discrepancies as the apex angle
was increased. The data are as yet insufficient to show whether the
fundamental assumptions of the theory are satisfied.

.

.

Iangley Aeronauti.calLaboratory,
National Adtisory Ccmmittee for Aeronautics,

Iangley Field, Vs., January 14, 1955.

.
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CAICUIATION OF MINIMUM IIWI’OF DEL!I!AWTNGS

The complete problem of the ting with a spiral vortex sheet is at
present ~solvedj however, certain limiting values of the lift may be
established from fundamental considerations. For the continuous-spiral-
sheet problem, the lift may be written as (eq. (17))

(Al)

where W(Q) now represents the ccmplex potential function and may be
considered to be made up of two parts: one, the Jones solution (ref. 9),
or that corresponding to irrotational motion of the fluid about the flat
Phtej and the other, the contribution of the spiral vortex sheet. The
first part gives the ~ft pV%a2 as in equation (M)j the second gives

(
dr eo* + 60*)dTthe lift increment pV= for each segment dT of the vortex

sheet, where QO* + ;o*–-is

a point on the vortex sheet
The lift contribu~by the

the lateral distance from the imaginary axis to

and T is a distance measured along the sheet.
vortex sheet is thus

where the integration is performed along the sheet
the center of the spiral.

The boundsry condition requires that the flow
the plate edges. h the e-plane this cmii.itionis
requiring a stagnation point at the origin. Thus,
in the tl-planecsm be written as

(M2)

from the origin to

sepsrate tangent to
equivalent to
the boundary condition

(A3)

or, in detail, the velocity contribution from the spiral vortex sheet
must oppose the velocity of the motion at the origin and, hence, must
equal -Vs. H these conditions are expressed in terms of the vortex
elements of the sheet,

(A4)
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where R is the distance between a point on the sheet and the origin &

and, as in equation (AZ?),the integration extends over the length of the
spiral sheet.

●

By comparing equations (A2) and (Ak) it canbe seen that, if ~

is of like sign everywhere, the lift contribution of the vortex system

a must be always the ssmemust be positive. However, the sign of
dT

because, in the conical flow, vorticity is generated uniformly at the
leading edge of the wing smd the vortex filsments pass back and into the

(
spiral and change only their lateral spacing and the magnitude of ~

)
but never cross and thus never change sign. It is proved then that, for
the conditions stated, the vortex spiral contributes only positive lift
over that contributed by the irrotathnal-flow (Jones) solution. Hence,
the Jones lift result is the lower lAmit of lift for the ccmplete spiral
problemas we~ as for the approximation of the present report.
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(cI) Assumed flow field. (b) Approximated flow field.

Figure L - Schematic drawings or sepaxatedflow over slender delta wings.
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